
Classic Component Set Help
Contents

TcsNotebook Component TcsProperEdit Component

TcsFormPanel Component TcsDBProperEdit Component

TcsHiResTimer Component TcsComboBox Component

TcsGrid Component TcsDBComboBox Component

TcsStringTable Class TcsRankListBox Component

TcsSculptButton Component TcsAutoDefaults Component

Technical Support

 TcsNotebook Component

Properties Methods Events
Unit
CSNoteBk

Description
The TcsNotebook component is similar to the TTabbedNotebook component but differs in that you can:

Attach the tabs to the top, bottom, left or right of the notebook using the TabOrientation property.
Specify a different bitmap to be displayed on each tab by editing the Bitmap property.
Specify how many glyphs are in the chosen Bitmap by editing the NumGlyphs property.
Disable specific notebook pages by editing the Pages property.
Specify the color of the selected tab's caption text using the SelectedColor and the color of the
unselected tab's caption text using the UnselectedColor.
Specify the color of the notebook and the selected tab using the Color and ParentColor properties.
Specify the color of the unselected tabs using the UnselectedTabColor and UseUnselectedTabColor
properties.
Specify the alignment of the tab’s caption text using the TextAlignment property.
Specify the alignment of the tab’s bitmap using the BitmapAlignment property.
Save resources by releasing the handles for the controls on the current page when another page is
selected by setting the SaveResources property.
Control the appearance of the tabs/notebook with the CornerSize, MaxTabWidth, RowIndent,
SidewaysText, TabHeight properties.
Change the behaviour of the notebook with the AnchoredTabs property.
Easily access the Notebook's Pages property at design time by using the (right click) context menu.

Properties
ActivePage RowIndent UseUnselectedTabColor
AnchoredTabs SaveResources
Bitmap SelectedColor
BitmapAlignment SidewaysText Run-time only:
CornerSize TabFont TabBitmap
MaxTabWidth TabHeight TabCaption
NumGlyphs TabOrientation TabNumGlyphs
PageIndex TabsPerRow TabPageEnabled
Pages TextAlignment TabPageIndex
ParentTabFont UnselectedColor TabPageVisible
RowExtent UnselectedTabColor

Events
OnPageChanged
OnPageChanging
OnTabClick

Methods
TabAtPos

CSNoteBk Unit
The CSNoteBk unit contains the declaration for the TcsNotebook component and its associated objects.

The following items are declared in the CSNoteBk unit:

Components
TcsNotebook
TcsPage

Types
TTabNumGlyphs
TTabOrientation
TTextAlignment
TBitmapAlignment
TTabRects = (trAll, trSelected, trUnselected);
TcsTabPoints = Array[0..5] of TPoint;
TPageChangingEvent

ActivePage Property
Applies to
TcsNotebook, TNotebook,    TTabbedNotebook component

Declaration
property ActivePage: String;

Description
The ActivePage property determines which page is displayed in the notebook or tabbed notebook
control.    The value of ActivePage must be one of the strings contained in the Pages property.

AnchoredTabs Property
Applies to
TcsNotebook component

Declaration
property AnchoredTabs: Boolean;
The AnchoredTabs property determines whether tabs will remain in place when selected or will be
brought to the front row.    The default value is False.

Bitmap Property
Applies to
TcsNotebook, TcsPage component

Declaration
property Bitmap: TBitmap;

Description
The Bitmap property for TcsNotebook indicates the bitmap for the currently selected page.    The
Bitmap property for TcsPage indicates the bitmap for that page's tab. The specified bitmap can contain
multiple glyphs, according to NumGlyphs, which are used for the different states of the page's tab.
Note that each page has its own Bitmap and NumGlyphs properties.    To easily assign bitmaps to each
tab, select the TcsNotebook component on the form, choose the Bitmap property in the Object
Inspector and then use the context menu (right-click the component) whenever you need to assign the
Bitmap for a different page.

BitmapAlignment Property
Applies to
TcsNotebook component

Declaration
property BitmapAlignment: TBitmapAlignment;

Description
The BitmapAlignment property determines the placement of the appropriate bitmap (if specified) on
each tab.    Note that the different bitmap alignment options are always regarded as though you are
viewing the tab in Top orientation, doing the stated bitmap alignment, and then rotating the tab (but
not rotating the bitmap).

TBitmapAlignment Type

Unit
CSNoteBk

Declaration
TBitmapAlignment = (baLeftTop, baCentreTop, baCenterTop, baRightTop, baLeftMiddle,
baCentreMiddle, baCenterMiddle, baRightMiddle, baLeftBottom, baCentreBottom,
baCenterBottom, baRightBottom, baFit, baInvisible);

Description
TBitmapAlignment defines the possible values the BitmapAlignment property of a TcsNotebook object
can assume.

CornerSize Property
Applies to
TcsNotebook component

Declaration
property CornerSize: Integer;

Description
The CornerSize property can be used to alter the size of the corner of each Tab.    The value specified is
the amount, in pixels, which is to be cut’ off the corner of the tab.    The CornerSize will always be
greater than 0.    Specify a CornerSize value of 1 if you want Win95 style (square) tabs.

Note that in certain situations the control will automatically adjust the CornerSize to prevent
inappropriate values relative to the values of the following properties: MaxTabWidth, TabHeight.

MaxTabWidth Property
Applies to
TcsNotebook component

Declaration
property MaxTabWidth: Integer;

Description
The MaxTabWidth property controls the maximum width, in pixels, of each tab.    When set to 0 (the
default) the tabs in a row will be sized to spread evenly across the full width of each row.    If you don't
want the tabs to ever be wider than a certain amount, for example if each tab has a short caption, you
should change MaxTabWidth to the desired value.    Note that you are not specifying the tab's width but
the maximum width it can be.    If the tab is narrower than MaxTabWidth (by virtue of the width of the
notebook and how many tabs there are per row) the tab's width will not be increased to MaxTabWidth.

Increasing the TabsPerRow property to a value greater than the actual no. of tabs will have a similar
effect to increasing MaxTabWidth but with all tabs always in a single row.

Note that in certain situations the control will automatically adjust the MaxTabWidth to prevent
inappropriate values relative to the value of the CornerSize property.

NumGlyphs Property
Applies to
TcsNotebook, TcsPage components

Declaration
property NumGlyphs: TTabNumGlyphs;

Description
The NumGlyphs property for TcsNotebook indicates the number of glyphs in the Bitmap for the current
tab.    The NumGlyphs property for TcsPage indicates the number of glyphs in the Bitmap for that
page's tab.    Each page has its own NumGlyphs property.    The default value is 1.    The first glyph is
used for the Selected tab state, the second glyph (if NumGlyphs is > 1) is used for the Disabled tab
state and the third glyph (if NumGlyphs > 2) is used for the Unselected tab state.

TTabNumGlyphs Type

Unit
CSNoteBk

Declaration
TTabNumGlyphs = 1..3; { Selected, Disabled, Unselected }

Description
The TTabNumGlyphs type defines the range of values the NumGlyphs property of TcsNotebook or
TcsPage can assume.

PageIndex Property
Applies to
TcsNotebook, TNotebook,    TTabbedNotebook component

Declaration
property PageIndex: Integer;

Description
The PageIndex property determines the current page in the notebook.    Changing the PageIndex value
changes the page currently displayed by the control.    The PageIndex value is zero based and will
range from 0 up to the number of tabs minus 1, i.e. 0..4 if there are 5 tabs.    Each new page added will
be given the next available page number.    Note that if you delete pages the PageIndex values will be
re-assigned to the remained tabs, starting from 0 and increasing.
You can also change the current page by using the ActivePage property.

Pages Property
See also Bitmaps
Applies to
TcsNotebook, TNotebook,    TTabbedNotebook component

Declaration
property Pages: TStrings;

Description
The Pages property contains the captions that identify each page in the notebook.    The control
ensures that the captions for each page are unique.    Each caption in Pages will have an associated
page which contains the controls for that page.    Each page can be enabled or disabled, with the
appearance of    the page's tab being changed accordingly.    Pages can also be hidden so that no tab is
shown.    The bitmap (if specified) for each page is also contained in each page.
To access the actual pages themselves you can use the Objects property of Pages.    Each page, i.e.
each item in Objects[], is of type TcsPage.      To access the tab caption for a page you can also use the
TabCaption property.    To access the bitmap for a page you can also use the TabBitmap property. To
access the NumGlyphs property for a page you can also use the TabNumGlyphs property.    To access
the PageEnabled property for a page you can also use the TabPageEnabled property.    To access the
PageVisible property for a page you can also use the TabPageVisible property.

See Also
Add Tab Dialog Box
Edit Tab Dialog Box
TabBitmap
TabCaption
TabNumGlyphs
TabPageEnabled
TabPageIndex
TabPageVisible
TcsNotebook

Bitmaps for TcsNotebook Pages

Normally, the bitmaps for each tab of the TcsNotebook would be specified at design-time using the
Bitmap property.    However, if you want to assign or change the bitmaps for the tabs at run-time you
can do this by using the TabBitmap property.    The following examples show how to do this when the
form is first created .    The examples assume that you have added a TcsNotebook component to Form1
and that it is called csNotebook1.    The first example shows how a new bitmap can be assigned to the
first tab (page 0) by loading a bitmap file.
Example 1
procedure TForm1.FormCreate(Sender: TObject);
begin
    csNotebook1.TabBitmap[0].LoadFromFile('c:\bitmaps\map.bmp');
end;

The next example shows how a bitmap which has been included in a resource file can be assigned to
the first tab.    The bitmap's resouce identifier is 'mybitmap'.
Example 2
procedure TForm1.FormCreate(Sender: TObject);
begin
    csNotebook1.TabBitmap[0].Handle :=
        LoadBitmap(HInstance, 'mybitmap');
end;

ParentTabFont Property
Applies to
TcsNotebook component

Declaration
property ParentTabFont: Boolean;

Description
The ParentTabFont property determines where the notebook looks for the font information for the tabs. 
If ParentTabFont is True, the notebook uses the font in its parent component's Font property for the
tabs.    If ParentTabFont is False, the notebook uses the TabFont property for the tabs.
Specifying a different TabFont value will automatically set ParentTabFont to False.    Setting
ParentTabFont to True automatically sets the notebook's TabFont to the same font as its parent
component's Font property.

RowExtent Property
Applies to
TcsNotebook component

Declaration
property RowExtent: Integer;

Description
The RowExtent property is a calculated read-only property which specifies the number of rows of tabs
currently displayed.    It is recalculated if the number of tabs is changed or if the TabsPerRow property is
changed.

RowIndent Property
Applies to
TcsNotebook component

Declaration
property RowIndent: Integer;

Description
The RowIndent property is the indent, in pixels, added to each successive row of tabs after the first.

SaveResources Property
Applies to
TcsNotebook component

Declaration
property SaveResources: Boolean;

Description
The SaveResources property indicates whether resources will be saved by releasing the Windows
handles for the components on a page when another page is selected.    Normally, the handles for the
components on a Notebook page are created when the page is first shown and then only released
when the form is destroyed.    If SaveResources is True then the handles for the components on a page
will be released when another page is selected, thus reducing the total resources required.
Note that if SaveResources is True there may be a slight increase in how long it takes to display a new
page (even if it has previously been selected) because the handles must be re-created each time the
page is re-selected.

SelectedColor Property
Applies to
TcsNotebook component

Declaration
property SelectedColor: TColor;

Description
The SelectedColor property indicates the color to be used for the text of the selected tab, the default
color is clBtnText.

SidewaysText Property
Applies to
TcsNotebook component

Declaration
property SidewaysText: Boolean;

Description
The SidewaysText property indicates whether tab text is to be displayed sideways when using Left or
Right tab orientation.    You can only set SidewaysText to True when TabOrientation is toLeft or toRight.   
Changing TabOrientation from toTop or toBottom to toLeft or toRight will automatically set
SidewaysText to True.    Changing TabOrientation from toLeft or toRight to toTop or toBottom will
automatically set SidewaysText to False.    When SidewaysText is True the list of fonts available when
editing the TabFont property only includes TrueType fonts so that text rotation will be possible.

TabFont Property
Applies to
TcsNotebook, TTabbedNotebook component

Declaration
property TabFont: TFont;

Description
The TabFont property determines the font used on the tabs of the notebook control.    The text of the
selected tab is boldfaced if the selected font for the TabFont property is not also boldfaced.
When using Left or Right oriented tabs (see TabOrientation) and SidewaysText you should use a
TrueType font to get rotated text.

TabHeight Property
Applies to
TcsNotebook component

Declaration
property TabHeight: Integer;

Description
The TabHeight property determines the height, in pixels, of each tab.

TabOrientation Property
Applies to
TcsNotebook component

Declaration
property TabOrientation: TTabOrientation;

Description
The TabOrientation property determines the orientation of the tabs around the notebook pages.    If the
SidewaysText property is True the tab text will be rotated when using Left and Right tab orientations.   
Note that bitmaps are never rotated, regardless of    the values of the TabOrientation or
BitmapAlignment properties.    Changing TabOrientation from toTop or toBottom to toLeft or toRight or
from toLeft or toRight to toTop or toBottom will automatically set the SidewaysText property to the
appropriate default value.

TTabOrientation Type
Unit
CSNoteBk

Declaration
TTabOrientation = (toTop, toLeft, toBottom, toRight);

Description
TTabOrientation defines the possible values of the TabOrientation property.

TabsPerRow Property
Applies to
TcsNotebook, TTabbedNotebook component

Declaration
property TabsPerRow: Integer;

Description
The TabsPerRow property determines how many tabs will appear in each row of tabs for the
TcsNotebook control.    The default value is 3.    The appropriate number of rows of tabs will be created
to allow for all tabs to be displayed using the TabsPerRow value.    If TabsPerRow is greater than the
actual number of tabs the size of the tabs will be reduced accordingly; this is similar to changing the
MaxTabWidth property.

TextAlignment Property
Applies to
TcsNotebook component

Declaration
property TextAlignment: TTextAlignment;

Description
The TextAlignment property determines where the tab’s caption text will be placed on the tab. Note
that the different text alignment options are always regarded as though you are viewing the tab in Top
orientation, doing the stated text alignment, and then rotating the tab.

TTextAlignment Type

Unit
CSNoteBk

Declaration
TTextAlignment = (taLeftTop, taCentreTop, taCenterTop, taRightTop, taLeftMiddle,
taCentreMiddle, taCenterMiddle, taRightMiddle, taLeftBottom, taCentreBottom,
taCenterBottom, taRightBottom, taInvisible);

Description
TTextAlignment defines the possible values the TextAlignment property of a TcsNotebook object can
assume.

UnselectedColor Property
Applies to
TcsNotebook component

Declaration
property UnselectedColor: TColor;

Description
The UnselectedColor property indicates the color to be used for the text of the unselected tabs, the
default color is clBtnText.

UnselectedTabColor Property
Applies to
TcsNotebook component

Declaration
property UnselectedTabColor: TColor;

Description
The UnselectedTabColor property indicates the color used for the background of the unselected tabs.   
The UnselectedTabColor property is only relevant when the UseUnselectedTabColor property is True.   
All tabs will have the same background color when UseUnselectedTabColor is False.

UseUnselectedTabColor Property
Applies to
TcsNotebook component

Declaration
property UseUnselectedTabColor: Boolean;

Description
The UseUnselectedTabColor property determines whether the value of the UnselectedTabColor
property will be used for the background color of the unselected tabs.    When UseUnselectedTabColor
is False all the tabs will have the same background color regardless of the UnselectedTabColor value.   
Also note that the UnselectedTabColor property is always ignored if there is more than one row of tabs
and AnchoredTabs is True, even if UseUnselectedTabColor is True.

OnPageChanged Event
Applies to
TcsNotebook, TNotebook component

Declaration
property OnPageChanged: TNotifyEvent;

Description
The OnPageChanged event occurs immediately after a new page has been made the current page.

OnPageChanging Event
Example
Applies to
TcsNotebook component

Declaration
property OnPageChanging: TPageChangingEvent;

Description
The OnPageChanging event is sent before a new page is made the current page.    Use the
OnPageChanging event handler if you want to prevent a change to a new page, for example when
certain validation conditions are not met for the current page.    To perform processing after changing
to a new page use the OnPageChanged event.

OnPageChanging Event Example

The following example shows how to prevent a change to a new page if certain conditions are not met.

procedure TForm1.csNotebook1PageChanging(Sender: Tobject;   
NewIndex: Integer; var AllowChange: Boolean);

begin
    if not PageIsValid(csNotebook1.PageIndex) then
        AllowChange := False;
end;

function TForm1.PageIsValid(Index: Integer): Boolean;
begin
    case Index of
        0: Result := (Length(Name.Text) > 0);
        1: Result := (Length(Address.Text) > 0);
    end;
end;

TPageChangingEvent Type
See also
Unit
CSNoteBk

Declaration
TPageChangingEvent = procedure(Sender: TObject; NewIndex: Integer; 
var AllowChange: Boolean) of object;

Description
The TPageChangingEvent type points to a method that is called before a new page is selected.   
NewIndex indicates the PageIndex value of the page which is about to be selected.    The AllowChange
variable indicates if it is permissable to select the new page.    If AllowChange is False the new page will
not be selected.

See Also
OnPageChanging

OnTabClick Event
Applies to
TcsNotebook component

Declaration
property OnTabClick: TNotifyEvent;

Description
An OnTabClick event occurs when the user selects a tab using one of the following techniques:

(1) pressing the primary mouse button while the mouse pointer is over the tab
(2) pressing the appropriate accelerator key for a tab (as for buttons)
(3) using the arrow keys when the tab has a focus rectangle

An OnTabClick event will not occur if the OnPageChanging event handler prevents the change to the
new page.

An OnTabClick event will not occur if a tab is selected programmatically, for example when the
ActivePage or PageIndex properties are assigned new values in source code.    To respond to a page
being made current (regardless of whether the user selected it or it was selected in source code) use
the OnPageChanged event instead.    The OnTabClick event, when it does occur, will occur after the
OnPageChanged event.

Technical Support
Technical support for the Classic Component Set can be obtained from Classic Software via:

CompuServe: 100033,1230
Email: 100033.1230@compuserve.com
Phone/Fax: +61 9 271 5407 (Local time = Greenwich Mean Time + 8 hours)
Mail: Unit 2, 19A Wood Street

Inglewood    WA    6052
Australia

For news about forthcoming components and products watch our web page at:
http://ourworld.compuserve.com/homepages/ClassicSoftware

Country Code Area Code (WA)Telephone No.
61 9 271 5407

Notebook Tabs Editor
Use the Notebook Tabs editor to add, edit, delete or move tabs in a TcsNotebook component.    The
editor shows the Caption, Help Context, Enabled and Visible information for each tab.    The bitmap for
the highlighted row of the list of tabs is also shown.

Opening the Notebook Tabs Editor:
Select the TcsNotebook component on the form and then use one of the following techniques:
· press the secondary mouse button while the mouse pointer is positioned over the form and then

choose the Edit Tabs command
· click the ellipsis button in the Value column for the Pages property
· double click in the Value column for the Pages property
· press Ctrl+Enter after moving to the Value column for the Pages property

Edit Button
Choose the Edit button to edit the Caption, Help Context, Enabled or Visible status of an existing tab.   
The Edit Tab dialog box will be displayed.

Add Button
Choose the Add button to add a new tab.    The Add Tab dialog box will be displayed.    New tabs are
always added to the end of all existing tabs.    If you want to insert a new tab you can add it and then
use the Move button to change its position in the list of tabs.

Delete Button
Choose the Delete button to delete an existing tab.    You will be asked to confirm that you want to
delete the highlighted tab.

Up/Down Buttons
Choose the Up or Down buttons to change the position of an existing tab.

Choose OK or press Esc to close the editor.

Edit Tab Dialog Box
Applies to
TcsNotebook

Use the Edit Tab dialog box to edit the details for an existing tab in a TcsNotebook control.    The
Caption can contain an ampersand prefix to indicate the letter to be underlined.
Enabled
Remove the check from the Enabled check-box to prevent selection of the tab at run-time.    You can
use the TabPageEnabled method of TcsNotebook to enable/disable individual tabs at run-time.
Visible
Remove the check from the Visible check-box to prevent the tab from showing.    You can use the
TabPageVisible method of TcsNotebook to show/hide individual tabs at run-time.

Add Tab Dialog Box
Applies to
TcsNotebook

Use the Add Tab dialog box to add the details for a new tab in a TcsNotebook control.    Refer to the Edit
Tab Dialog Box for more information.

TcsPage Component
See also Properties
A TcsPage component is used for each page of a TcsNotebook component.

See Also
Pages
TabBitmap
TabCaption
TabNumGlyphs
TabPageEnabled
TabPageIndex
TabPageVisible

Properties
Bitmap
NumGlyphs
PageEnabled
PageVisible

TabBitmap Property
Applies to
TcsNotebook component

Declaration
property TabBitmap[Index: Integer]: TBitmap;

Description
Run-time only.    The TabBitmap property gives you access to the bitmap for each tab.    The Index value
corresponds to the tab's page number.    TabBitmap will return nil if the Index value is out of range.

Note that:
csNotebook1.TabBitmap[0].LoadFromFile('map.bmp');
is equivalent to:
TcsPages(csNotebook1.Pages.Objects[0]).Bitmap.LoadFromFile('map.bmp');

TabCaption Property
Applies to
TcsNotebook component

Declaration
property TabCaption[Index: Integer]: String;

Description
Run-time only.    The TabCaption property gives you access to the caption text for each tab.    The Index
value corresponds to the tab's page number.    TabCaption will return an empty string if the Index value
is out of range.

Note that:
csNotebook1.TabCaption[0] := 'Tab 0';
is equivalent to:
TcsPages(csNotebook1.Pages.Objects[0]).Caption := 'Tab 0';

TabNumGlyphs Property
Applies to
TcsNotebook component

Declaration
property TabNumGlyphs[Index: Integer]: TTabNumGlyphs;

Description
Run-time only. The TabNumGlyphs property gives you access to the NumGlyphs property for the
specified tab.    The Index value corresponds to the tab's page number.    TabNumGlyphs will return 1 if
the Index value is out of range.

TabPageIndex Property
Applies to
TcsNotebook component

Declaration
property TabPageIndex[const TabIdentity: String]: Integer;

Description
Run-time only.    The read-only TabPageIndex property allows you to determine the page number of the
tab with the specified identity.    TabPageIndex will return -1 if no tab exists with the specified identity.

TabPageEnabled Property
Applies to
TcsNotebook component

Declaration
property TabPageEnabled[Index: Integer]: Boolean;

Description
Run-time only.    The TabPageEnabled property gives you access to the enabled status for each tab.   
The Index value corresponds to the tab's page number.

TabPageVisible Property
Applies to
TcsNotebook component

Declaration
property TabPageVisible[Index: Integer]: Boolean;

Description
Run-time only.    The TabPageVisible property gives you access to the visible status for each tab.    The
Index value corresponds to the tab's page number.

PageEnabled Property
Applies to
TcsPage

Declaration
property PageEnabled: Boolean;

Description
The PageEnabled property indicates if you can select the page at run-time.    Note that each page also
has an (inherited) Enabled property that will be True if the page is the current page and False
otherwise.

PageVisible Property
Applies to
TcsPage

Declaration
property PageVisible: Boolean;

Description
The PageVisible property indicates if you can see the page at run-time.    Note that each page also has
an (inherited) Visible property that will be True if the page is the current page and False otherwise.

 TcsProperEdit Component
Unit
CSProper

Description
The TcsProperEdit and TcsDBProperEdit components allow proper-case text input and editing.    During
input each letter which occurs after a delimiter (such as space, comma, hyphen, apostrophe etc.) is
converted to upper-case and all other letters are converted to lower-case.    The TcsProperEdit and
TcsDBProperEdit components both have the same additional properties and events beyond their
ancestor's classes (TEdit and TDBEdit respectively), they do however differ in their implementations.
In addition to the following properties and events, TcsProperEdit components have the same properties
and events as TEdit components.
In addition to the following properties and events, TcsDBProperEdit components have the same
properties and events as TDBEdit components.

Properties
ProperCase

Events
OnConvert

ProperCase Property
Applies to
TcsProperEdit, TcsDBProperEdit components

Declaration
property ProperCase: Boolean;

Description
The ProperCase property determines whether the text should be converted to proper-case.    The
default value is True.    Set ProperCase to False to disable text conversion.

OnConvert Event
Applies to
TcsProperEdit, TcsDBProperEdit components

Declaration
property OnConvert: TcsConvertEvent;

Description
The OnConvert event occurs prior to the default conversion of the input text whenever the text is
changed.    Writing an event handler for this event allows you to pre-process the text before the default
handling is performed and/or to block the default handling altogether.

 TcsDBProperEdit Component
Unit
CSProper

Description
The TcsDBProperEdit has the same additional properties as TcsProperEdit but is descended from
TDBEdit.

TcsConvertEvent Type
Unit
CSProper

Declaration
TcsConvertEvent = procedure(var AString: String; var Handled: Boolean) of object;

Description
The TcsConvertEvent type points to a method that is called when the specified text needs converting
to proper-case.    The assigned method can set Handled to True to indicate that it has handled the
conversion and no further conversion is necessary.

CSProper Unit
The CSProper unit contains the declaration for the TcsProperEdit and TcsDBProperEdit components and
their associated objects.

The following items are declared in the CSProper unit:

Components
TcsProperEdit
TcsDBProperEdit

Types
TcsConvertEvent

 TcsHiResTimer Component

Properties Events
Unit
CSHRTime

Description
The TcsHiResTimer component is similar to the TTimer component but differs in that you can set timer
intervals less than the minimum 55ms (18.2 times per second) allowed with a TTimer.    TcsHiResTimer
allows an Interval as small as 1 millsecond.    The timer events generated by TcsHiResTimer also have a
higher priority than those generated by a TTimer thus ensuring that they are more likely to be
processed when needed.    The WM_TIMER messages used by TTimer are generally ignored by Windows
while there are other messages pending and multiple pending WM_TIMER messages will actually be
combined into a single message.

Important Note:
The 16-bit (Delphi 1) TcsHiResTimer component depends on the file CSTIME16.DLL.    You should make
sure that this DLL is available before running an application (16-bit) using the component.    An
application will still run if the DLL is not found but no timer events will occur.    Windows will attempt to
find the DLL by looking in the following locations (in this order):

1. The current directory.
2. The Windows directory (the directory containing WIN.COM).
3. The Windows system directory (the directory containing such system files as

GDI.EXE).
4. The directory containing the executable file for the current task.
5. The directories listed in the PATH environment variable.
6. The list of directories mapped in a network.

The 32-bit (Delphi 2) TcsHiResTimer component doesn't require a DLL file.

Properties
DLLLoaded (run-time only)
Enabled
Interval
OneShot
Resolution

Events
OnTimer

DLLLoaded Property
Applies to
TcsHiResTimer component

Declaration
property DLLLoaded: Boolean;

Description
Delphi 1 (16-
bit)

The DLLLoaded property indicates if the DLL (Dynamic Link Library) required
by the TcsHiResTimer component was found and loaded successfully.    If
DLLLoaded is False no timer events will occur.    The name of the required
DLL file is CSTIME16.DLL.

Delphi 2 (32-
bit)

DLLLoaded will always be True.    No DLL is used.

Enabled Property
Applies to
TcsHiResTimer component

Declaration
property Enabled: Boolean;

Description
The Enabled property determines whether the component will generate OnTimer events.    The default
value is True.

Interval Property
Applies to
TcsHiResTimer component

Declaration
property Interval: UINT;

Description
The Interval property determines the interval in milliseconds (1ms = 1/1000th of a second) between
successive timer events.    The default value is 100ms.    For example, to generate timer events 50
times per second you would set Interval to 20.   
You should use the largest possible value appropriate for your needs.    For example, if you only need to
generate a timer event for an alarm in an appointment system alarm you could use an Interval of 1000
(1 second), using a smaller Interval would be wasteful of CPU time.    System overhead, i.e. the amount
of CPU time used, will increase as the Interval value is decreased.   
The Resolution value can affect the accuracy of the Interval.

OneShot Property
Applies to
TcsHiResTimer component

Declaration
property OneShot: Boolean;

Description
The OneShot property determines whether Enabled will automatically be set to False after the OnTimer
event occurs.    This can be used to reduce system overhead if you need to generate timer events of
varying, but known, lengths.    The default value is False.
For example, if you have some MIDI data to output you can send the first note to be played and set the
Interval so that the next timer event occurs when the next note needs to be played.    This is more
efficient than setting the Interval to a small value and then continually checking (in each OnTimer
event) if the next note needs to be played yet.

Resolution Property
Applies to
TcsHiResTimer component

Declaration
property Resolution: UINT;

Description
The Resolution property determines the accuracy of the timer events in milliseconds.    The default
value is 100ms.    In general you can usually use a Resolution value equal to the Interval value.    Using
Resolution values smaller than necessary will just increase system overhead, i.e. the amount of CPU
time used.

OnTimer Event
Applies to
TcsHiResTimer component

Declaration
property OnTimer: TNotifyEvent;

Description
The OnTimer event occurs at successive time intervals as specified by the Interval value.    If OneShot
is True only one event will occur whenever the component is Enabled.    No OnTimer events will occur if
Enabled is False.    Unless using OneShot timer events, the code you place in the OnTimer event
handler should be able to execute in as little time as possible.   
If your OnTimer event handler takes too long to execute it is possible (depending on the Interval value
being used) that another (and another and...) timer event could occur before the previous timer event
has been handled.    Your program would continually be handling the timer events and would probably
hang were this situation (time needed to execute OnTimer event handler > Interval) to continue.

CSHRTime Unit
The CSHRTime unit contains the declaration for the TcsHiResTimer component.

The following items are declared in the CSHRTime unit:

Components
TcsHiResTimer

 TcsRankListBox Component

Properties
Unit
CSRankLB

Description
The TcsRankListBox component is a TListBox descendant in which the order of items can be changed at
run-time by dragging them with the mouse (or by using the keyboard).    Two modes of moving items
using the mouse are possible, one where the item is moved as it is dragged (MoveOnDrag = True), the
other where the item is only moved when the mouse button is released (MoveOnDrag = False).   

Moving an item using the mouse:
Use Shift+Left-Click to select the item and then drag the item (keeping the Shift key and left mouse
button depressed) to its new position.    Release the mouse button and Shift key when the item is in the
desired position.

Moving an item using the keyboard:
Select the item to be moved.    Hold down the Shift key while using the Up, Down, Home or End keys to
move the item to its new position.

In addition to the new MoveOnDrag property a TcsRankListBox component inherits all the properties
and events of TListBox.    However, the following properties have been made read-only and can't be
changed:

Columns Always 0 (zero)

DragCursor Always crDrag

DragMode Always dmManual

ExtendedSelect Always False

MultiSelect Always False

Sorted Always False

Properties
MoveOnDrag

MoveOnDrag Property
Applies to
TcsRankListBox component

Declaration
property MoveOnDrag: Boolean;

Description
The MoveOnDrag property determines whether the item's position will be changed immediately
(MoveOnDrag = True) as it is being dragged with the mouse or only when it is dropped (MoveOnDrag =
False).    The default value is True.    When the keyboard is used to move an item the position will be
changed immediately, regardless of the MoveOnDrag setting.

CSRankLB Unit
The CSRankLB unit contains the declaration for the TcsRankListBox component.

The following items are declared in the CSRankLB unit:

Components
TcsRankListBox

 TcsAutoDefaults Component

Properties
Unit
CSADMain

Description
The TcsAutoDefaults component allows you to automatically apply previously stored default property
values to new components dropped onto a form at design-time.    You can also apply default property
values to existing components on a form by using the Edit Automatic Defaults dialog box.
The component works by allowing you to store 'default' components in a file, called an AutoDefaults
File.    Default property values apply on a component type (class) basis (including descendant classes). 
An AutoDefaults file can contain any number of default components.    The size of the AutoDefaults file
will depend on the type and number of default components it contains.   
Once you have defined your AutoDefaults file it is simply a matter of adding a TcsAutoDefaults
component to a form and then whenever a new component is added to the form the component's
properties will be changed to that of the 'default' component.   
TcsAutoDefaults components on different forms can share the same AutoDefaults file, i.e. you will
usually only need one file though you can have separate files for different types of forms or different
projects.
TcsAutoDefaults components are ignored at run-time.

Using TcsAutoDefaults
To use the TcsAutoDefaults component you need to:

1. Add the component to a form.
2. Change the Filename property to the desired name.
3. Add a new component, e.g. a Label component, and set its properties to the values you

want to be the default values for a TLabel.    You should only change those properties
which you would always change (to the same value) for every new Label.

4. Double-click the TcsAutoDefaults component or select it and then right-click and choose
Edit.    The Edit Automatic Defaults dialog box will be displayed.    It is important to note
that this step is only necessary in defining the 'default' component and is not necessary
each time you want to later auto-default new components added to forms.

5. Select the label component you just edited from the Component/Class list and then
choose the Add button.    That component has now been saved as the 'default' Label
component in the AutoDefaults file.    The "Classes with defaults:" list will now show
TLabel.

6. Close the Automatic Property Defaults form by pressing Esc or choosing the Close button.
7. Now add a new Label component to your form, you will see that its properties are

changed to those of the 'default' component.    Note that some properties (such as Left,
Top) are not defaulted.    The Name property is never defaulted.

If you want to change the defaults for a particular component you just need to repeat steps 3 to 5.

Setup
Prior to using this component you need to add the following information to your DELPHI.INI file.    Please
note that the UnsupportedClasses list should all be on one line (up to and including TSpinEdit), not on

two lines as shown below:
[ClassicSoftware.AutoDefaults]
DefaultFilename=c:\delphi\noname.adf
Extension=adf
UnsupportedClasses=TMainMenu;TPopupMenu;TTabSet;TDBNavigator;

TDBLookupCombo;TSpinButton;TSpinEdit
Ignore0=TControl.Left
Ignore1=TControl.Top
Ignore2=TComponent.Caption
Ignore3=TComponent.Text
Ignore4=TRadioGroup.Items
Ignore5=TDBRadioGroup.Items
Ignore6=TTabbedNotebook.Pages
Ignore7=TcsNotebook.Pages

Description of INI file settings
DefaultFilename specifies the value to be used for the Filename property when a new TcsAutoDefaults
component is added to a form (thus saving you from having to type the filename every time).    Change
the setting to a suitable name.
Extension is the default filename extension to be used for AutoDefaults files when no extension is
specified.
UnsupportedClasses are those classes within the standard Delphi environment which cannot be saved
as default components, there may be others in addition to those shown above which you come across
from 3rd party component libraries.    Attempting to save a component which is an unsupported class
should not cause any problems and you can later add it to the UnsupportedClasses section if you get
an 'Ignore this component' message when loading the AutoDefaults file.
Ignore<n> settings specify which properties of a default component are to be ignored because they
are not relevant or cause problems.    For example, when you drop a new component on a form you
want it to stay where you dropped it, thus the Top and Left properties should not be set to the default
values.    The Ignore<n> settings in DELPHI.INI are used as the initial Ignore values when an
AutoDefaults file is first loaded.    If the AutoDefaults file contains alternate values which have been
specified from within the TcsAutoDefaults component editor, they will be used instead.

Properties
Active
Filename
ShowHints

Active Property
Applies to
TcsAutoDefaults component

Declaration
property Active: Boolean;

Description
The Active property determines whether the TcsAutoDefaults component will respond to the adding of
new components to the form.    The default value is True.    When a new component is added to a form
and Active is True, any existing default property values for that type of component will be applied.   
When Active is False, no action is taken when new components are added to the form.

Filename Property
Applies to
TcsAutoDefaults component

Declaration
property Filename: String;

Description
The Filename property determines the name of the AutoDefaults file in which the 'default' components
will be stored.    The DefaultFilename setting in the [ClassicSoftware.AutoDefaults] section of your
DELPHI.INI file is used as the default value.    If you specify the name of an existing AutoDefaults file the
defaults in that file will be loaded.    If you specify the name of a file which is not an AutoDefaults file
you will get an error message.    If you omit the filename extension the Extension setting in the
[ClassicSoftware.AutoDefaults] section of your DELPHI.INI file will be used.    AutoDefaults filenames can
use any extension but the recommended extension is "ADF".

ShowHints Property
Applies to
TcsAutoDefaults component

Declaration
property ShowHints: Boolean;

Description
The ShowHints property determines whether hints will be shown for buttons on the component editor
(Edit Automatic Defaults dialog box) at design-time.    You can show the component editor by double
clicking the component or by right clicking the component and choosing the Edit command.

CSADMain Unit
The CSADMain unit contains the declarations for the TcsAutoDefaults component.

The following items are declared in the CSADMain unit:

Components
TcsAutoDefaults

Exceptions
EcsADStreamError

Constants
WM_ApplyDefaults

Edit Automatic Defaults Dialog Box
Applies to
TcsAutoDefaults

The Edit Automatic Defaults dialog box shows all the components on the current form in alphabetical
order.    The class for each component is also shown.    On the right hand side is a list which shows the
classes which have previously stored defaults.
Add button
Press this button to add the property values of the highlighted component as the defaults for that
component's class.    The defaults are saved immediately in the AutoDefaults file.    If the class of the
highlighted component already has defaults then they will be replaced with the new defaults.
Set button
Press this button to set the property values of the highlighted component to the default values for that
component's class.    If the highlighted component's class has no defaults then no changes will be
made to the component's properties.
Delete button
Press this button to delete the defaults for the classes highlighted in the "Classes with defaults" list.   
You can make multiple/extended selections in the list to delete the defaults for multiple classes.
Delete All button
Press this button to delete the defaults for all classes in the "Classes with defaults" list, whether they
are highlighted or not.    You will be asked to confirm that you want to delete all defaults before this
is done.    Note that the only way of restoring the default values after deleting all defaults is by shutting
down Delphi and then restoring the original AutoDefaults file from a backup copy (or by re-adding the
defaults for each class from scratch).
Ignore button
Press this button to define the list of property values that should be ignored when applying defaults.   
Each item in the list should be in the format <class>.<property> where <class> is the class
containing the property and <property> is the property name.    For example, to ignore the Left
property (because you don't want components added to a form to all be defaulted to the same
position) of all TControl descendants you would add TControl.Left to the list.    (This is in fact standard
so you don't actually need to add TControl.Left in this case.)    Each item in the list should be on a
separate line.    The specified properties will be ignored in the specified class and all its descendants.   
Thus including TControl.Left in the list actually causes TEdit.Left, TLabel.Left etc. to be ignored too
because these are all TControl descendants.
Close button
Press this button or press the ESC key to close the dialog box.    Changes are automatically saved so
there is no difference between using the Close button and pressing ESC.

 TcsFormPanel Component

Properties
Unit
CSFrmPnl

Description
The TcsFormPanel component is similar to a TPanel but adds two new properties -- Form (run-time only)
and FormName -- which allow a form to be displayed on the panel's surface.      Thus, a TcsFormPanel
can be used as a sub-form component to allow one form to be placed on another form, on another
panel, on a notebook page etc.    This allows greater modularity of your code by allowing you to keep
the code for the sub-form separate from its container (form/panel/notebook) and can also allow you to
re-use the same sub-form on multiple forms.   
Certain properties which are available in TPanel are not applicable in TcsFormPanel -- because the form
will be occupying the whole of the TcsFormPanel's surface -- and have been removed.    In some cases
(DragCursor, Font, OnClick, OnDragDrop etc.) there are equivalent properties/events in the sub-form
that you can use instead.    The TPanel properties and events which are not also present in
TcsFormPanel components are listed below:
Properties removed
Alignment, DragCursor, DragMode, Ctl3D, Font, Locked, ParentCtl3D, ParentFont, ParentShowHint,
PopupMenu, ShowHint.
Events removed
OnClick, OnDblClick, OnDragDrop, OnDragOver, OnEndDrag, OnMouseDown, OnMouseMove,
OnMouseUp, OnResize.

Properties
Form (run-time only)
FormName

Form Property
Example
Applies to
TcsFormPanel component

Declaration
property Form: TForm;

Description
Run-time only.    The Form property determines the current form to display on the panel.    When using
auto-created forms you can also use the FormName property.    Note that when you assign a new form
to the Form property the previous form is only hidden and not closed or released.   
It is your responsibility to create (before assigning to the Form property) and destroy (after hiding) any
forms which are not auto-created by the application. The example shows how to do this within another
form.    The source code for CSFPMAIN.PAS in the CSFPDEMO project illustrates how to dynamically
create and destroy forms as each page on a TcsNotebook is displayed.

FormName Property
Applies to
TcsFormPanel component

Declaration
property FormName: String;

Description
The FormName property can be used to indicate the name of the auto-created form to be displayed on
the panel.    You can determine all forms which are being auto-created by choosing Options | Project
from the Delphi menu and then choosing the Forms tab.    You should not use the FormName property
for a form that is not being auto-created -- use the Form property instead.

CSFrmPnl Unit
The CSFrmPnl unit contains the declaration for the TcsFormPanel component.

The following items are declared in the CSFrmPnl unit:

Components
TcsFormPanel

Example
The following example shows how you would create a sub-form (Form2) in Form1's OnCreate event
handler.    Form1 is specified as the owner of the sub-form so that it will take care of destroying the sub-
form.    Remember to include the name of the unit containing the sub-form in the uses clause of the
unit which is creating the sub-form, i.e. for the following example you would include Unit2 in the uses
clause of    Unit1 (this assumes that Unit1 contains the definition for TForm1 and Unit2 contains the
definition for TForm2):

procedure TForm1.FormCreate(Sender: TObject);
begin
    csFormPanel1.Form := TForm2.Create(Self);
end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
    if (csFormPanel1.Form <> nil) then
        csFormPanel1.Form.Close;
end;

 TcsComboBox Component
Unit
CSXCombo

Description
The TcsComboBox component is functionally the same as the TComboBox component except that it will
correctly remember the current item when changing pages on a TcsNotebook component which has
the SaveResources property set to True.    All properties and events of TcsComboBox are the same as
for TComboBox, only the behaviour is changed.    The TcsComboBox component can also be used
instead of TComboBox on other 'paged' components such as TNotebook and TTabbedNotebook when
other resource saving mechanisms (via direct calls to DestroyHandle) are being used.

 TcsDBComboBox Component
Unit
CSXCombo

Description
The TcsDBComboBox component is functionally the same as the TDBComboBox component except that
it will correctly remember the current item when changing pages on a TcsNotebook component which
has the SaveResources property set to True.    All properties and events of TcsDBComboBox are the
same as for TDBComboBox, only the behaviour is changed.    The TcsDBComboBox component can also
be used instead of TDBComboBox on other 'paged' components such as TNotebook and
TTabbedNotebook when other resource saving mechanisms (via direct calls to DestroyHandle) are
being used.

CSXCombo Unit

The CSXCombo unit contains the declarations for alternative ComboBox components which can be
used on the pages of TcsNotebook components.

The following items are declared in the CSXCombo unit:

Components
TcsComboBox
TcsDBComboBox

 TcsGrid Component

Properties Methods
Unit
CSGrid

Description
The TcsGrid component is similar to the TStringGrid component but differs in that it uses a
TcsStringTable to store the cells' data rather than a sparse-array as used by TStringGrid.    The main
ramification of this is that each cell already contains a zero length string and insertion and deletion of
columns and rows can be performed quickly using the InsertColumn, DeleteColumn, InsertRow and
DeleteRow methods.      Additional changes allow the grid to be used as though it were a multiple-
selection columned ListBox by using the ExtendedSelect and MultiSelect properties (in conjunction with
the goRowSelect setting in Options).
A current row indicator will be drawn in the last fixed column when MultiSelect and goRowSelect have
both been set to True and you have one or more fixed columns.

Properties
TcsGrid inherits all the properties of TDrawGrid.    The following properties have been added or
changed:

Cells (run-time only) MultiSelect
Data (run-time only) Objects (run-time only)
DataCells (run-time only) Selected (run-time only)
DataObjects (run-time only)
ExtendedSelect

Methods
TcsGrid inherits all the methods of TDrawGrid.    The following methods have been added or changed:

AddColumn InsertColumn
AddRow InsertRow
ClearDataCells InvalidateRow
ClearSelected
DeleteColumn
DeleteRow

Cells Property
Applies to
TStringGrid, TcsGrid components; TcsStringTable object

Declaration
property Cells[ACol, ARow: Integer]: String;

Description
Run-time only.    The Cells property allows access to each individual cell of the grid.    ACol specifies the
column coordinate and ARow specifies the row coordinate.    Column coordinates range from 0 to
ColCount - 1.    Row coordinates range from 0 to RowCount - 1.    To reference cells which are not part of
the fixed rows or columns in a TcsGrid you can use the DataCells property, i.e. DataCells[0, 0] is
equivalent to Cells[FixedCols, FixedRows].
Unlike TStringGrid, with TcsGrid you do not have to store something in a cell before using it, all cells
are initialised to a zero length string.

Data Property
Applies to
TOutlineNote, TcsGrid components

Declaration
property Data: TcsStringTable;

Description
Run-time only.    The Data property allows access to the data structure which holds the data for the
cells of the grid.

DataCells Property
Applies to
TcsGrid component

Declaration
property DataCells[ACol, ARow: Integer]: String;

Description
Run-time only.    The DataCells property allows access to each individual 'data' cell of the grid.    A 'data'
cell is any of the non-fixed cells.    ACol specifies the column coordinate and ARow specifies the row
coordinate.    Column coordinates range from 0 to ColCount -FixedCols - 1.    Row coordinates range
from 0 to RowCount - FixedRows - 1.    DataCells[0, 0] is equivalent to Cells[FixedCols, FixedRows].

DataObjects Property
Applies to
TcsGrid component

Declaration
property DataObjects[ACol, ARow: Integer]: TObject;

Description
Run-time only.    The DataCells property allows access to the objects associated with each individual
'data' cell of the grid.    A 'data' cell is any of the non-fixed cells.    ACol specifies the column coordinate
and ARow specifies the row coordinate.    Column coordinates range from 0 to ColCount -FixedCols - 1.   
Row coordinates range from 0 to RowCount - FixedRows - 1.    DataCells[0, 0] is equivalent to
Cells[FixedCols, FixedRows].

Objects Property
Applies to
TStringList, TStrings objects; TStringGrid, TcsGrid components

Declaration
property Objects[ACol, ARow: Integer]: TObject;

Description
Run-time only.    The Objects property allows access to the object associated with each individual cell of
the grid.    ACol specifies the column coordinate and ARow specifies the row coordinate.    Column
coordinates range from 0 to ColCount - 1.    Row coordinates range from 0 to RowCount - 1.    To
reference objects associated with cells in a TcsGrid which are not part of the fixed rows or columns you
can use the DataObjects property, i.e. DataObjects[0, 0] is equivalent to Objects[FixedCols,
FixedRows].

Selected Property
Applies to
TDBListBox, TDirectoryListBox, TFileListBox, TListBox, TcsGrid components; TcsStringTable
object

Declaration
property Selected[ARow: Integer]: Boolean;

Description
Run-time only.    The Selected property indicates if the specified row has been selected.

ExtendedSelect Property
Applies to
TListBox, TcsGrid components

Declaration
property ExtendedSelect: Boolean;

Description
The ExtendedSelect property determines if the user can select a range of rows in the grid.    It is only
effective when MultiSelect is True and goRowSelect has been selected in Options.

MultiSelect Property
Applies to
TListBox, TFileListBox, TcsGrid components

Declaration
property MultiSelect: Boolean;

Description
The MultiSelect property determines if the user can select more than one item in the grid.    This
property is only effective when goRowSelect has been selected in Options.    A current row indicator will
be drawn in the last fixed column (when you have one or more fixed columns) when MultiSelect and
goRowSelect are set to True.

AddColumn Method
Applies to
TcsGrid component; TcsStringTable object

Declaration
procedure AddColumn;

Description
The AddColumn method adds a new (last) column.    The new column will have the same number of
rows as existing columns and each cell will contain a zero length string.

AddRow Method
Applies to
TcsGrid component; TcsStringTable object

Declaration
procedure AddRow;

Description
The AddRow method adds a new (last) row.    The new row will have the same number of columns as
existing rows and each cell will contain a zero length string.

ClearDataCells Method
Applies to
TcsGrid component

Declaration
procedure ClearDataCells;

Description
The ClearDataCells method sets the contents of each 'data' cell (all non-fixed cells) to a zero length
string and clears any selected rows.

ClearSelected Method
Applies to
TcsGrid component; TcsStringTable object

Declaration
procedure ClearSelected;

Description
The ClearSelected method sets the Selected status for all rows to False.

DeleteColumn Method
Applies to
TcsGrid component; TcsStringTable object

Declaration
procedure DeleteColumn(ACol: Integer);

Description
The DeleteColumn method deletes the specified column.    If there are objects associated with the cells
of the column to be deleted you should free the objects before using DeleteColumn.

DeleteRow Method
Applies to
TcsGrid component; TcsStringTable object

Declaration
procedure DeleteRow(ARow: Integer);

Description
The DeleteRow method deletes the specified row.    If there are objects associated with the cells of the
row to be deleted you should free the objects before using DeleteRow.

InsertColumn Method
Applies to
TcsGrid component; TcsStringTable object

Declaration
procedure InsertColumn(ACol: Integer);

Description
The InsertColumn method inserts a new column at the specified column position.

InsertRow Method
Applies to
TcsGrid component; TcsStringTable object

Declaration
procedure InsertRow(ARow: Integer);

Description
The InsertRow method inserts a new row at the specified row position.

InvalidateRow Method
Applies to
TcsGrid component

Declaration
procedure InvalidateRow(ARow: Integer);

Description
The InvalidateRow method invalidates the whole of the specified row, including fixed cells and any
partially visible cells on the right hand side of the grid.

CSGrid Unit

The CSGrid unit contains the declaration for TcsGrid.

The following items are declared in the CSGrid unit:

Components
TcsGrid

TcsStringTable Object

Properties Methods
Unit
CSStrTbl

Description
The TcsStringTable class defines a dynamic two dimensional string array which is used as the storage
class for TcsGrid cells but which can also be used for other purposes.

Properties
Cells (run-time only) SelectedRows (run-time only)
ColCount (run-time only)
Objects (run-time only)
RowCount (run-time only)
Selected (run-time only)

Methods
AddColumn DeleteRow
AddRow InsertColumn
ChangeSize InsertRow
Clear MoveColumn
ClearSelected MoveRow
Create
DeleteColumn

ColCount Property
Applies to
TDrawGrid, TStringGrid, TcsGrid components; TcsStringTable object

Declaration
property ColCount: Integer;

Description
Run-time only.    The ColCount property indicates the number of columns in the grid/table.    ColCount
must be greater than zero.

RowCount Property
Applies to
TDrawGrid, TStringGrid, TcsGrid components; TcsStringTable object

Declaration
property RowCount: Integer;

Description
Run-time only.    The RowCount property indicates the number of rows in the grid/table.    RowCount
must be greater than zero.

SelectedRows Property
Applies to
TcsStringTable object

Declaration
property SelectedRows: TStringList;

Description
Run-time and read only.    The SelectedRows property contains details of the selected rows.    Each item
in the list is the IntToStr() value of the number of the row which was selected.    The list of selected rows
is adjusted whenever rows are inserted, deleted or moved.

ChangeSize Method
Applies to
TcsStringTable object

Declaration
procedure ChangeSize(NewColCount, NewRowCount: LongInt);

Description
The ChangeSize method allows the number of columns and rows in the table to be changed.    You can
use ChangeSize instead of making multiple calls to AddColumn, DeleteColumn, AddRow or DeleteRow.

Clear Method
Applies to
TcsStringTable object

Declaration
procedure Clear;

Description
The Clear method allows the contents of all cells to be set to a zero length string.    If you have objects
associated with each cell these will be unaffected by this method.

Create Method
Applies to
TcsStringTable object

Declaration
constructor Create(NumCols, NumRows: Integer);

Description
The Create method creates a new TcsStringTable object with the specified number of columns and
rows.    The minimum size table that can be created is a 1 x 1 size table.

MoveColumn Method
Applies to
TcsStringTable object

Declaration
procedure MoveColumn(FromIndex, ToIndex: LongInt);

Description
The MoveColumn method moves the column at position FromIndex to position ToIndex.

MoveRow Method
Applies to
TcsStringTable object

Declaration
procedure MoveRow(FromIndex, ToIndex: LongInt);

Description
The MoveRow method moves the row at position FromIndex to position ToIndex.

CSStrTbl Unit

The CSStrTbl unit contains the declaration for TcsStringTable.

The following items are declared in the CSStrTbl unit:

Types
TcsStringTable

TabAtPos Method
Applies to
TcsNotebook component

Declaration
function TabAtPos(X, Y: Integer): Integer;

Description
The TabAtPos method returns the index position (0..Pages.Count - 1) of the tab which contains the
specified point.    If no tab containing the specified point is found then -1 is returned.

 TcsSculptButton Component

Properties Methods Events
Unit
CSSclptB

Description
The TcsSculptButton component displays a button of the shape, color and texture specified by its
Bitmap property.    Areas of the bitmap which are the transparent color will not be shown, allowing the
background underneath the button to show through.    A 3D bevel can be added automatically by
specifying the BevelWidth.    Areas of the button can also be Speckled.    The TcsSculptButton
component is a non-windowed component that is a descendant of TGraphicControl.
In addition to these properties, methods and events, this component also has the properties and
methods that apply to all controls.

Properties
AutoSize PreciseClick
BevelHighlightColor PreciseShowHint
BevelShadowColor Speckled
BevelWidth SpeckleOpaqueColor
Bitmap SpeckleTransparentColor
BitmapDown (run-time only) TextPosition
BitmapUp (run-time only) TextX
BorderColor TextY

Methods
PtInMask

Events
OnClick OnMouseDown
OnDragDrop OnMouseMove
OnDragOver OnMouseUp
OnEndDrag

CSSclptB Unit
The CSSclptB unit contains the declaration for the TcsSculptButton component.

The following items are declared in the CSNoteBk unit:

Components
TcsSculptButton

Types
TcsBevelWidth = 0..2;
TcsTextPosition = (tpCentered, tpXY);

PtInMask Method
Applies to
TcsSculptButton component

Declaration
function PtInMask(const X, Y: Integer): Boolean; virtual;

Description
The PtInMask method returns True if the specified point is inside the mask for the button, i.e. that the
point is in the non-transparent part of the bitmap.

AutoSize Property
Applies to
TcsSculptButton, TDBEdit, TDBText, TEdit, TImage, TLabel, TMaskEdit, TOLEContainer
components.

Declaration
property AutoSize: Boolean;

Description
The AutoSize property determines whether the component automatically resizes to match the size of
the bitmap assigned to the Bitmap property.    The default value is True.

BevelHightlightColor Property
Applies to
TcsSculptButton

Declaration
property BevelHightlightColor: TColor;

Description
The BevelHightlightColor property determines the color used for the highlighted part of the 3D bevel
effect applied to the bitmap's outline.    The default value is clBtnHighlight.

BevelShadowColor Property
Applies to
TcsSculptButton

Declaration
property BevelShadowColor: TColor;

Description
The BevelShadowColor property determines the color used for the shadowed part of the 3D bevel
effect applied to the bitmap's outline.    The default value is clBtnShadow.

BevelWidth Property
Applies to
TcsSculptButton, TPanel components.

Declaration
property BevelWidth: TcsBevelWidth;

Description
The BevelWidth property determines the width of the 3D bevel effect applied to the bitmap's outline.   
The default (and maximum) value is 2.

Bitmap Property
Applies to
TcsSculptButton, TcsNotebook components

Declaration
property Bitmap: TBitmap;

Description
The Bitmap property of TcsSculptButton components determines the shape, color and texture of the
button.    Areas of the bitmap which are the transparent color will not be shown, allowing the
background to be seen.      If using an automatic 3D bevel effect (BevelWidth > 0) then bitmaps with
intricate outlines may not produce the desired effect -- using a narrower bevel may help. The bitmap
used should also have a border (of the transparent color) of at least 3 pixels wide to prevent clipping
from occurring when the 3D bevel effect is added.
Examples:
The following simple bitmap would produce a round red button.    The yellow areas would become
transparent and wouldn't be seen:

The following bitmap would produce an oval red button with a blue edge.    The yellow areas would
become transparent.    If you then set Speckled to True and SpeckleTransparentColor to clRed the red
area would become speckled -- pixels would alternate between being transparent (to let the color of
the pixel in the component underneath the button to show through) and being the color specified by
the SpeckleOpaqueColor property.

Transparent areas aren't limited to just the outside edges of the bitmap.    The following bitmap would
produce a red donut-shaped button.    All yellow areas would become transparent:

BitmapDown Property
Applies to
TcsSculptButton

Declaration
property BitmapDown: TBitmap;

Description
Run-time only.    The read-only BitmapDown property allows access to the bitmap used for the 'down'
state of the button.

BitmapUp Property
Applies to
TcsSculptButton

Declaration
property BitmapUp: TBitmap;

Description
Run-time only.    The read-only BitmapUp property allows access to the bitmap used for the 'up' state of
the button.

BorderColor Property
Applies to
TcsSculptButton

Declaration
property BorderColor: TColor;

Description
The BorderColor property determines the color of the border around the outline of the button.    The
default value is clBlack.    If you don't want a border then you can set BorderColor to the transparent
color color of the Bitmap.

PreciseClick Property
Applies to
TcsSculptButton

Declaration
property PreciseClick: Boolean;

Description
The PreciseClick property determines how the button will respond to mouse clicks and mouse pointer
(cursor) movement.    The default value is True.    When PreciseClick is True any mouse clicks in the
transparent areas of the button will be ignored and the mouse pointer will only change (if the Cursor
property is other than crDefault) when over non-transparent areas of the button.    When PreciseClick is
False, the button is treated as though it were a regular rectangular shaped button.    You may need to
set PreciseClick to False if for example your users are confused when nothing happens when they click
'on' a button but over a transparent area (imagine a donut shape and they click in the hole) or if
children use your program and you want to allow them to click on or near the button (within its
rectangle).

PreciseShowHint Property
Applies to
TcsSculptButton

Declaration
property PreciseShowHint: Boolean;

Description
The PreciseClick property determines whether hints will only be shown when the mouse pointer
(cursor) is positioned over a non-transparent part of the button. The default value is True.   
It is important to note that the effect of PreciseShowHint being True may not be quite what you expect
-- because the Application may still display the hint for the parent (if the parent has ShowHint = True).   
Consider the situation where a TcsSculptButton has been placed over a TImage and the button, image
and form all have ShowHint set to True.    In this case PreciseShowHint will result in the hint for the form
being shown (because it is the parent of the button) rather than the hint for the image when the cursor
is positioned over the transparent parts of the button.

Speckled Property
Applies to
TcsSculptButton

Declaration
property Speckled: Boolean;

Description
The Speckled property determines whether the surface of the button will be speckled (alternating
pixels either transparent or the color specified by the SpeckleOpaqueColor property).    Speckling will
occur on areas of the button which match the value of the    SpeckleTransparentColor property.    The
default value is False.

SpeckleOpaqueColor Property
Applies to
TcsSculptButton

Declaration
property SpeckleOpaqueColor: TColor;

Description
The SpeckleOpaqueColor is used when Speckled is True and is applied (in a checkerboard pattern) to
the areas of the button's Bitmap which are the same color as SpeckleTransparentColor.    The default
value is clWhite.

SpeckleTransparentColor Property
Applies to
TcsSculptButton

Declaration
property SpeckleTransparentColor: TColor;

Description
The SpeckleTransparentColor is used when Speckled is True to determine the areas of the button's
Bitmap which are to be speckled.    The default value is clBlack.    The speckles will be the color
specified by the SpeckleOpaqueColor property.

TextPosition Property
Applies to
TcsSculptButton

Declaration
property TextPosition: TcsTextPosition;

Description
The TextPosition property determines where the button's Caption text will be displayed.    The default
value is tpCentered which will result in the caption being centered both horizontally and vertically
within the button's rectangle.    If you need to explicitly position the text, for example when using an
irregularly shaped button, then set TextPosition to tpXY and specify the location using the TextX and
TextY properties.

TextX Property
Applies to
TcsSculptButton

Declaration
property TextX: Integer;

Description
The TextX property is only used when TextPosition has been set to tpXY and is used along with TextY to
determine the location where the button's Caption text will be displayed.    TextX specifies the
horizontal coordinate relative to the left side of the button's client rectangle. The default value is 0.

TextY Property
Applies to
TcsSculptButton

Declaration
property TextY: Integer;

Description
The TextY property is only used when TextPosition has been set to tpXY and is used along with TextX to
determine the location where the button's Caption text will be displayed. TextY specifies the vertical
coordinate relative to the top of the button's client rectangle.    The default value is 0.

The transparent color for a bitmap is based on the color of the pixel at the bottom-left corner of the
bitmap (or clWhite for monochrome bitmaps) and can be accessed using the TransparentColor property
of TBitmap objects.

